PUBLICACIONES

Sociedad Colombiana de Matemáticas:Publicaciones
Lecturas Matemáticas
Volumen 26 [2] (2005)Páginas 165 - 170
Articulos Matematicos

Tantrices de lazos en R3

Óscar Andrés Montaño Carreño
Universidad del Valle

Resumen.Un lazo en ${\mathbb R}^{3}$ es una curva cerrada regular $\sigma$. La normalizaci\'on del vector velocidad $\tau=\dot{\sigma}/|\dot{\sigma}|$ se denomina tangente indicatriz o tantriz de $\sigma$. La tantriz de una curva cerrada en ${\mathbb R}^{3}$ es una curva cerrada en $S^{2}$, pero no siempre una curva cerrada en $S^{2}$ es la tantriz de una curva cerrada en ${\mathbb R}^{3}$. Se dar\'an condiciones necesarias y suficientes para que una curva cerrada $C\,'$ en $S^{2}$ sea la tantriz de un lazo en ${\mathbb R}^{3}$.

Abstract. A loop in ${\mathbb R}^3$ is a closed regular curve $\sigma$. The normalization of the velocity vector $\tau = \dot{\sigma}/|\dot{\sigma}|$ is called the tangent indicatrix or the tantrix of $\sigma$. The tantrix is a closed curve in $S^2$, but not all closed curves in $S^2$ are the tantrix of some closed curve in ${\mathbb R}^3$. In this paper sufficient and necessary conditions for a closed curve $C^\prime$ in $S^2$ to be the tantrix of some loop in ${\mathbb R}^3$ are given.

Palabras claves. Regular curve, tantrix, loop

Codigo AMS. 2000 AMS Mathematics Subject Classification. 53A04, 53A05

Archivo completo : Formato [PDF] (630 K).